296

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Mecchia, M. A., Debernardi, J. M., Rodriguez, R. E., Schommer, C., & Palatnik, J. F., (2013).

MicroRNA miR396 and RDR6 synergistically regulate leaf development. Mechanisms of

Development, 130(1), 2–13. https://doi.org/10.1016/j.mod.2012.07.005.

Medina, C., Da Rocha, M., Magliano, M., Raptopoulo, A., Marteu, N., Lebrigand, K., Abad,

P., et al., (2018). Characterization of siRNAs clusters in Arabidopsis thaliana galls induced

by the root-knot nematode Meloidogyne incognita. BMC Genomics, 19(1), 1–16. https://

doi. org/10.1186/s12864-018-5296-3.

Mello, C. C., & Conte, D., (2004). Revealing the world of RNA interference. Nature,

431(7006), 338. https://doi.org/10.1038/nature02872.

Meyer, S. U., Stoecker, K., Sass, S., Theis, F. J., & Pfaffl, M. W., (2014). Posttranscriptional

regulatory networks: From expression profiling to integrative analysis of mRNA and

microRNA data. In: Biassoni, R., & Raso, A., (eds.), Quantitative Real-Time PCR (pp.

165–188). Humana Press: New York, NY. https://doi.org/10.1007/978-1-4939-0733-5_15.

Mhuantong, W., & Wichadakul, D., (2009). MicroPC (μPC): A comprehensive resource

for predicting and comparing plant microRNAs. BMC Genomics, 10(1), 1–8. https://doi.

org/10.1186/1471-2164-10-366.

Milev, I., Yahubyan, G., Minkov, I., & Baev, V., (2011). miRTour: Plant miRNA and target

prediction tool. Bioinformation, 6(6), 248. 10.6026/97320630006248.

Mirlohi, S., & He, Y., (2016). Small RNAs in plant response to abiotic stress. In: Shanker,

A., (ed.), Biotic and Biotic Stress in Plants-Recent Advances and Future Perspectives (pp.

63–80). Intech: Croatia. http://dx.doi.org/10.5772/61834.

Mondal, T. K., Panda, A. K., Rawal, H. C., & Sharma, T. R., (2018). Discovery of microRNA­

target modules of African rice (Oryza glaberrima) under salinity stress. Scientific Reports,

8(1), 1–11. https://doi. org/10.1038/s41598-017-18206-z.

Montes, R. A. C., De Paoli, E., Accerbi, M., Rymarquis, L. A., Mahalingam, G., Marsch-

Martínez, N., Meyers, B. C., et al., (2014). Sample sequencing of vascular plants demonstrates

widespread conservation and divergence of microRNAs. Nature Communications, 5(1),

1–15. https://doi.org/10.1038/ncomms4722.

Muchate, N. S., Nikalje, G. C., Rajurkar, N. S., Suprasanna, P., & Nikam, T. D., (2016). Plant

salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance.

The Botanical Review, 82(4), 371–406. https://doi.org/10.1007/s12229-016-9173-y.

Munns, R., & Tester, M., (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59,

651–681. https://doi.org/ 10.1146/annurev.arplant.59.032607.092911.

Mutum, R. D., Balyan, S. C., Kansal, S., Agarwal, P., Kumar, S., Kumar, M., & Raghuvanshi,

S., (2013). Evolution of varietyspecific regulatory schema for expression of osamiR408

in indica rice varieties under drought stress. The FEBS Journal, 280(7), 1717–1730. https://

doi.org/10.1038/s41598-017-15450-1.

Naito, Y., Yoshimura, J., Morishita, S., & Ui-Tei, K., (2009). siDirect 2.0: Updated software

for designing functional siRNA with reduced seed-dependent off-target effect. BMC

Bioinformatics, 10(1), 1–8. https://doi.org/10.1186/1471-2105-10-392.

Nakano, M., Nobuta, K., Vemaraju, K., Tej, S. S., Skogen, J. W., & Meyers, B. C., (2006).

Plant MPSS databases: Signature-based transcriptional resources for analyses of mRNAand

small RNA. Nucleic Acids Research, 34(suppl_1), D731–D735. https://doi.org/10.1093/

nar/gkj077.

Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K., (2014). The transcriptional

regulatory network in the drought response and its crosstalk in abiotic stress responses